этот генерируемый код позволяет мне сохранять 'модель'
# Network building
netg = tflearn.input_data([None, 12])
netg = tflearn.embedding(netg, input_dim=10000, output_dim=12)
netg = tflearn.lstm(netg, 4, dropout=0.8,dynamic=True)
netg = tflearn.fully_connected(netg, 2, activation='softmax')
netg = tflearn.regression(netg, optimizer='adam', learning_rate=0.001,loss='categorical_crossentropy')
# Training
modelg = tflearn.DNN(netg, tensorboard_verbose=0)
model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True, batch_size=20,n_epoch=10)
modelg.load('NNmodeloLSTMsell.model',weights_only=True)
model.save('NNmodeloLSTMsell.model')
И я использую этот код, чтобы сделать прогноз, подобный этому
def predictorLSTMsell(t):
# Network building
netg = tflearn.input_data([None, 12])
netg = tflearn.embedding(netg, input_dim=10000, output_dim=12)
netg = tflearn.lstm(netg, 4, dropout=0.8,dynamic=True)
netg = tflearn.fully_connected(netg, 2, activation='softmax')
netg = tflearn.regression(netg, optimizer='adam', learning_rate=0.001,loss='categorical_crossentropy')
# Training
modelg = tflearn.DNN(netg, tensorboard_verbose=0)
#model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True, batch_size=20,n_epoch=10)
modelg.load('NNmodeloLSTMsell.model',weights_only=True)
t= np.array(t)
t = t.reshape([-1, 12])
print('t predict',( np.round(modelg.predict([t[0]])[0]) ))
Когда я пытаюсь использовать'gniptorLSTMsell() 'дважды это дало мне ошибку.он работает в первый раз, но во второй раз он дал мне эту ошибку.