Правильный способ справиться с поворотами камеры - PullRequest
0 голосов
/ 03 января 2019

Начнем с рассмотрения 2 типов вращения камеры:

Камера, вращающаяся вокруг точки (орбиты):

def rotate_around_target(self, target, delta):
    right = (self.target - self.eye).cross(self.up).normalize()
    amount = (right * delta.y + self.up * delta.x)
    self.target = target
    self.up = self.original_up
    self.eye = (
        mat4.rotatez(amount.z) *
        mat4.rotatey(amount.y) *
        mat4.rotatex(amount.x) *
        vec3(self.eye)
    )

Камера, вращающая цель (FPS)

def rotate_target(self, delta):
    right = (self.target - self.eye).cross(self.up).normalize()
    self.target = (
        mat4.translate(self.eye) *
        mat4().rotate(delta.y, right) *
        mat4().rotate(delta.x, self.up) *
        mat4.translate(-self.eye) *
        self.target
    )

А затем просто функция обновления, где матрицы проекции / вида вычисляются из векторов камеры глаза / цели / вверх:

def update(self, aspect):
    self.view = mat4.lookat(self.eye, self.target, self.up)
    self.projection = mat4.perspective_fovx(
        self.fov, aspect, self.near, self.far
    )

Проблема с этими функциями вращения возникает, когданаправление обзора камеры становится параллельным оси вверх (здесь z-вверх) ... в этот момент камера ведет себя очень неприятно, поэтому у меня будут глюки, такие как:

showcase

Итак, мой вопрос: как я могу отрегулировать приведенный выше код, чтобы камера делала полные повороты без конечного результата, выглядящего странно в определенных точках края (ось камеры переворачивается вокруг: /)?

IХотелось бы иметь такое же поведение, как и у многих пакетов DCC (3dsmax, maya, ...), где они совершают полные вращения без какого-либо странного поведения.

РЕДАКТИРОВАТЬ:

Для тех, ктоЯ хочу создать математическую версию. Я решил создать действительно минималистичную версию, способную воспроизводить объясненные проблемы:

import math
from ctypes import c_void_p

import numpy as np
from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *

import glm


class Camera():

    def __init__(
        self,
        eye=None, target=None, up=None,
        fov=None, near=0.1, far=100000
    ):
        self.eye = eye or glm.vec3(0, 0, 1)
        self.target = target or glm.vec3(0, 0, 0)
        self.up = up or glm.vec3(0, 1, 0)
        self.original_up = glm.vec3(self.up)
        self.fov = fov or glm.radians(45)
        self.near = near
        self.far = far

    def update(self, aspect):
        self.view = glm.lookAt(
            self.eye, self.target, self.up
        )
        self.projection = glm.perspective(
            self.fov, aspect, self.near, self.far
        )

    def rotate_target(self, delta):
        right = glm.normalize(glm.cross(self.target - self.eye, self.up))
        M = glm.mat4(1)
        M = glm.translate(M, self.eye)
        M = glm.rotate(M, delta.y, right)
        M = glm.rotate(M, delta.x, self.up)
        M = glm.translate(M, -self.eye)
        self.target = glm.vec3(M * glm.vec4(self.target, 1.0))

    def rotate_around_target(self, target, delta):
        right = glm.normalize(glm.cross(self.target - self.eye, self.up))
        amount = (right * delta.y + self.up * delta.x)
        M = glm.mat4(1)
        M = glm.rotate(M, amount.z, glm.vec3(0, 0, 1))
        M = glm.rotate(M, amount.y, glm.vec3(0, 1, 0))
        M = glm.rotate(M, amount.x, glm.vec3(1, 0, 0))
        self.eye = glm.vec3(M * glm.vec4(self.eye, 1.0))
        self.target = target
        self.up = self.original_up

    def rotate_around_origin(self, delta):
        return self.rotate_around_target(glm.vec3(0), delta)


class GlutController():

    FPS = 0
    ORBIT = 1

    def __init__(self, camera, velocity=100, velocity_wheel=100):
        self.velocity = velocity
        self.velocity_wheel = velocity_wheel
        self.camera = camera

    def glut_mouse(self, button, state, x, y):
        self.mouse_last_pos = glm.vec2(x, y)
        self.mouse_down_pos = glm.vec2(x, y)

        if button == GLUT_LEFT_BUTTON:
            self.mode = self.FPS
        elif button == GLUT_RIGHT_BUTTON:
            self.mode = self.ORBIT

    def glut_motion(self, x, y):
        pos = glm.vec2(x, y)
        move = self.mouse_last_pos - pos
        self.mouse_last_pos = pos

        if self.mode == self.FPS:
            self.camera.rotate_target(move * 0.005)
        elif self.mode == self.ORBIT:
            self.camera.rotate_around_origin(move * 0.005)


class MyWindow:

    def __init__(self, w, h):
        self.width = w
        self.height = h

        glutInit()
        glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH)
        glutInitWindowSize(w, h)
        glutCreateWindow('OpenGL Window')

        self.startup()

        glutReshapeFunc(self.reshape)
        glutDisplayFunc(self.display)
        glutMouseFunc(self.controller.glut_mouse)
        glutMotionFunc(self.controller.glut_motion)
        glutIdleFunc(self.idle_func)

    def startup(self):
        glEnable(GL_DEPTH_TEST)

        aspect = self.width / self.height
        self.camera = Camera(
            eye=glm.vec3(10, 10, 10),
            target=glm.vec3(0, 0, 0),
            up=glm.vec3(0, 1, 0)
        )
        self.model = glm.mat4(1)
        self.controller = GlutController(self.camera)

    def run(self):
        glutMainLoop()

    def idle_func(self):
        glutPostRedisplay()

    def reshape(self, w, h):
        glViewport(0, 0, w, h)
        self.width = w
        self.height = h

    def display(self):
        self.camera.update(self.width / self.height)

        glClearColor(0.2, 0.3, 0.3, 1.0)
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

        glMatrixMode(GL_PROJECTION)
        glLoadIdentity()
        gluPerspective(glm.degrees(self.camera.fov), self.width / self.height, self.camera.near, self.camera.far)
        glMatrixMode(GL_MODELVIEW)
        glLoadIdentity()
        e = self.camera.eye
        t = self.camera.target
        u = self.camera.up
        gluLookAt(e.x, e.y, e.z, t.x, t.y, t.z, u.x, u.y, u.z)
        glColor3f(1, 1, 1)
        glBegin(GL_LINES)
        for i in range(-5, 6):
            if i == 0:
                continue
            glVertex3f(-5, 0, i)
            glVertex3f(5, 0, i)
            glVertex3f(i, 0, -5)
            glVertex3f(i, 0, 5)
        glEnd()

        glBegin(GL_LINES)
        glColor3f(1, 0, 0)
        glVertex3f(-5, 0, 0)
        glVertex3f(5, 0, 0)
        glColor3f(0, 1, 0)
        glVertex3f(0, -5, 0)
        glVertex3f(0, 5, 0)
        glColor3f(0, 0, 1)
        glVertex3f(0, 0, -5)
        glVertex3f(0, 0, 5)
        glEnd()

        glutSwapBuffers()


if __name__ == '__main__':
    window = MyWindow(800, 600)
    window.run()

Чтобы запустить ее, вам нужно установить pyopengl и pyglm

Ответы [ 3 ]

0 голосов
/ 04 января 2019

Так много способов изобрести колесо не существует?Вот аккуратный вариант (адаптированный из концепции целевой камеры в Opengl Development Cookbook, MMMovania, глава 2):

  1. Сначала создайте новую матрицу ориентации (поворота) (обновленную для использования накопленной мыши)deltas)

    # global variables somewhere appropriate (or class variables)
    mouseX = 0.0
    mouseY = 0.0
    def rotate_around_target(self, target, delta):
        global mouseX
        global mouseY
        mouseX += delta.x/5.0
        mouseY += delta.y/5.0
        glm::mat4 M = glm::mat4(1)
        M = glm::rotate(M, delta.z, glm::vec3(0, 0, 1))
        M = glm::rotate(M, mouseX , glm::vec3(0, 1, 0))
        M = glm::rotate(M, mouseY, glm::vec3(1, 0, 0))
    
  2. Используйте расстояние, чтобы получить вектор, а затем переведите этот вектор в текущую матрицу вращения

        self.target = target
        float distance = glm::distance(self.target, self.eye)
        glm::vec3 T = glm::vec3(0, 0, distance)
        T = glm::vec3(M*glm::vec4(T, 0.0f))
    
  3. Получитьновое положение глаз камеры, добавив вектор перевода в целевую позицию

        self.eye = self.target + T
    
  4. Пересчитайте ортонормированный базис (из которого вам нужно сделать только вектор UP)

        # assuming self.original_up = glm::vec3(0, 1, 0)
        self.up = glm::vec3(M*glm::vec4(self.original_up, 0.0f))
        # or
        self.up = glm::vec3(M*glm::vec4(glm::vec3(0, 1, 0), 0.0f))
    

5 ... и затем вы можете попробовать это, обновив матрицу представления с помощью функции lookAt

    self.view = glm.lookAt( self.eye, self.target, self.up)

Это самая простая концепция для этих видов преобразованияпроблемы / решения, которые я нашел на сегодняшний день.Я протестировал его на C / C ++ и просто изменил для вас синтаксис pyopengl (искренне надеюсь).Дайте нам знать, как это происходит (или нет).

0 голосов
/ 04 января 2019

Вот небольшое резюме со всеми ответами, представленными в этой теме:

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *

import glm


class Camera():

    def __init__(
        self,
        eye=None, target=None, up=None,
        fov=None, near=0.1, far=100000
    ):
        self.eye = eye or glm.vec3(0, 0, 1)
        self.target = target or glm.vec3(0, 0, 0)
        self.up = up or glm.vec3(0, 1, 0)
        self.original_up = glm.vec3(self.up)
        self.fov = fov or glm.radians(45)
        self.near = near
        self.far = far

    def update(self, aspect):
        self.view = glm.lookAt(
            self.eye, self.target, self.up
        )
        self.projection = glm.perspective(
            self.fov, aspect, self.near, self.far
        )

    def zoom(self, *args):
        delta = -args[1] * 0.1
        distance = glm.length(self.target - self.eye)
        self.eye = self.target + (self.eye - self.target) * (delta + 1)

    def load_projection(self):
        width = glutGet(GLUT_WINDOW_WIDTH)
        height = glutGet(GLUT_WINDOW_HEIGHT)

        glMatrixMode(GL_PROJECTION)
        glLoadIdentity()
        gluPerspective(glm.degrees(self.fov), width / height, self.near, self.far)

    def load_modelview(self):
        e = self.eye
        t = self.target
        u = self.up

        glMatrixMode(GL_MODELVIEW)
        glLoadIdentity()
        gluLookAt(e.x, e.y, e.z, t.x, t.y, t.z, u.x, u.y, u.z)


class CameraSkatic(Camera):

    def rotate_around_target(self, target, delta):
        M = glm.mat4(1)
        M = glm.rotate(M, delta.x, glm.vec3(0, 1, 0))
        M = glm.rotate(M, delta.y, glm.vec3(1, 0, 0))

        self.target = target
        T = glm.vec3(0, 0, glm.distance(self.target, self.eye))
        T = glm.vec3(M * glm.vec4(T, 0.0))
        self.eye = self.target + T
        self.up = glm.vec3(M * glm.vec4(self.original_up, 1.0))

    def rotate_around_origin(self, delta):
        return self.rotate_around_target(glm.vec3(0), delta)


class CameraBPL(Camera):

    def rotate_target(self, delta):
        right = glm.normalize(glm.cross(self.target - self.eye, self.up))
        M = glm.mat4(1)
        M = glm.translate(M, self.eye)
        M = glm.rotate(M, delta.y, right)
        M = glm.rotate(M, delta.x, self.up)
        M = glm.translate(M, -self.eye)
        self.target = glm.vec3(M * glm.vec4(self.target, 1.0))

    def rotate_around_target(self, target, delta):
        right = glm.normalize(glm.cross(self.target - self.eye, self.up))
        amount = (right * delta.y + self.up * delta.x)
        M = glm.mat4(1)
        M = glm.rotate(M, amount.z, glm.vec3(0, 0, 1))
        M = glm.rotate(M, amount.y, glm.vec3(0, 1, 0))
        M = glm.rotate(M, amount.x, glm.vec3(1, 0, 0))
        self.eye = glm.vec3(M * glm.vec4(self.eye, 1.0))
        self.target = target
        self.up = self.original_up

    def rotate_around_origin(self, delta):
        return self.rotate_around_target(glm.vec3(0), delta)


class CameraRabbid76_v1(Camera):

    def rotate_around_target_world(self, target, delta):
        V = glm.lookAt(self.eye, self.target, self.up)

        pivot = target
        axis = glm.vec3(-delta.y, -delta.x, 0)
        angle = glm.length(delta)

        R = glm.rotate(glm.mat4(1), angle, axis)
        RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
        NV = V * RP

        C = glm.inverse(NV)
        targetDist = glm.length(self.target - self.eye)
        self.eye = glm.vec3(C[3])
        self.target = self.eye - glm.vec3(C[2]) * targetDist
        self.up = glm.vec3(C[1])

    def rotate_around_target_view(self, target, delta):
        V = glm.lookAt(self.eye, self.target, self.up)

        pivot = glm.vec3(V * glm.vec4(target.x, target.y, target.z, 1))
        axis = glm.vec3(-delta.y, -delta.x, 0)
        angle = glm.length(delta)

        R = glm.rotate(glm.mat4(1), angle, axis)
        RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
        NV = RP * V

        C = glm.inverse(NV)
        targetDist = glm.length(self.target - self.eye)
        self.eye = glm.vec3(C[3])
        self.target = self.eye - glm.vec3(C[2]) * targetDist
        self.up = glm.vec3(C[1])

    def rotate_around_target(self, target, delta):
        if abs(delta.x) > 0:
            self.rotate_around_target_world(target, glm.vec3(delta.x, 0.0, 0.0))
        if abs(delta.y) > 0:
            self.rotate_around_target_view(target, glm.vec3(0.0, delta.y, 0.0))

    def rotate_around_origin(self, delta):
        return self.rotate_around_target(glm.vec3(0), delta)

    def rotate_target(self, delta):
        return self.rotate_around_target(self.eye, delta)


class CameraRabbid76_v2(Camera):

    def rotate_around_target(self, target, delta):

        # get directions
        los = self.target - self.eye
        losLen = glm.length(los)
        right = glm.normalize(glm.cross(los, self.up))
        up = glm.cross(right, los)

        # upright up vector (Gram–Schmidt orthogonalization)
        fix_right = glm.normalize(glm.cross(los, self.original_up))
        UPdotX = glm.dot(fix_right, up)
        up = glm.normalize(up - UPdotX * fix_right)
        right = glm.normalize(glm.cross(los, up))
        los = glm.cross(up, right)

        # tilt around horizontal axis
        RHor = glm.rotate(glm.mat4(1), delta.y, right)
        up = glm.vec3(RHor * glm.vec4(up, 0.0))
        los = glm.vec3(RHor * glm.vec4(los, 0.0))

        # rotate around up vector
        RUp = glm.rotate(glm.mat4(1), delta.x, up)
        right = glm.vec3(RUp * glm.vec4(right, 0.0))
        los = glm.vec3(RUp * glm.vec4(los, 0.0))

        # set eye, target and up
        self.eye = target - los * losLen
        self.target = target
        self.up = up

    def rotate_around_origin(self, delta):
        return self.rotate_around_target(glm.vec3(0), delta)

    def rotate_target(self, delta):
        return self.rotate_around_target(self.eye, delta)


class GlutController():

    FPS = 0
    ORBIT = 1

    def __init__(self, camera, velocity=100, velocity_wheel=100):
        self.velocity = velocity
        self.velocity_wheel = velocity_wheel
        self.camera = camera

    def glut_mouse(self, button, state, x, y):
        self.mouse_last_pos = glm.vec2(x, y)
        self.mouse_down_pos = glm.vec2(x, y)

        if button == GLUT_LEFT_BUTTON:
            self.mode = self.FPS
        elif button == GLUT_RIGHT_BUTTON:
            self.mode = self.ORBIT

    def glut_motion(self, x, y):
        pos = glm.vec2(x, y)
        move = self.mouse_last_pos - pos
        self.mouse_last_pos = pos

        if self.mode == self.FPS:
            self.camera.rotate_target(move * 0.005)
        elif self.mode == self.ORBIT:
            self.camera.rotate_around_origin(move * 0.005)

    def glut_mouse_wheel(self, *args):
        self.camera.zoom(*args)


def render_text(x, y, text):
    glColor3f(1, 1, 1)
    glRasterPos2f(x, y)
    glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24, text.encode("utf-8"))


def draw_plane_yup():
    glColor3f(1, 1, 1)
    glBegin(GL_LINES)
    for i in range(-5, 6):
        if i == 0:
            continue
        glVertex3f(-5, 0, i)
        glVertex3f(5, 0, i)
        glVertex3f(i, 0, -5)
        glVertex3f(i, 0, 5)
    glEnd()

    glBegin(GL_LINES)
    glColor3f(1, 1, 1)
    glVertex3f(-5, 0, 0)
    glVertex3f(0, 0, 0)
    glVertex3f(0, 0, -5)
    glVertex3f(0, 0, 0)

    glColor3f(1, 0, 0)
    glVertex3f(0, 0, 0)
    glVertex3f(5, 0, 0)
    glColor3f(0, 1, 0)
    glVertex3f(0, 0, 0)
    glVertex3f(0, 5, 0)
    glColor3f(0, 0, 1)
    glVertex3f(0, 0, 0)
    glVertex3f(0, 0, 5)
    glEnd()


def draw_plane_zup():
    glColor3f(1, 1, 1)
    glBegin(GL_LINES)
    for i in range(-5, 6):
        if i == 0:
            continue
        glVertex3f(-5, 0, i)
        glVertex3f(5, 0, i)
        glVertex3f(i, -5, 0)
        glVertex3f(i, 5, 0)
    glEnd()

    glBegin(GL_LINES)
    glColor3f(1, 1, 1)
    glVertex3f(-5, 0, 0)
    glVertex3f(0, 0, 0)
    glVertex3f(0, -5, 0)
    glVertex3f(0, 0, 0)

    glColor3f(1, 0, 0)
    glVertex3f(0, 0, 0)
    glVertex3f(5, 0, 0)
    glColor3f(0, 1, 0)
    glVertex3f(0, 0, 0)
    glVertex3f(0, 0, 5)
    glColor3f(0, 0, 1)
    glVertex3f(0, 0, 0)
    glVertex3f(0, 5, 0)
    glEnd()


def line(p0, p1, color=None):
    c = color or glm.vec3(1, 1, 1)
    glColor3f(c.x, c.y, c.z)
    glVertex3f(p0.x, p0.y, p0.z)
    glVertex3f(p1.x, p1.y, p1.z)


def grid(segment_count=10, spacing=1, yup=True):
    size = segment_count * spacing
    right = glm.vec3(1, 0, 0)
    forward = glm.vec3(0, 0, 1) if yup else glm.vec3(0, 1, 0)
    x_axis = right * size
    z_axis = forward * size

    data = []
    i = -segment_count

    glBegin(GL_LINES)
    while i <= segment_count:
        p0 = -x_axis + forward * i * spacing
        p1 = x_axis + forward * i * spacing
        line(p0, p1)
        p0 = -z_axis + right * i * spacing
        p1 = z_axis + right * i * spacing
        line(p0, p1)
        i += 1
    glEnd()


def axis(size=1.0, yup=True):
    right = glm.vec3(1, 0, 0)
    forward = glm.vec3(0, 0, 1) if yup else glm.vec3(0, 1, 0)
    x_axis = right * size
    z_axis = forward * size
    y_axis = glm.cross(forward, right) * size
    glBegin(GL_LINES)
    line(x_axis, glm.vec3(0, 0, 0), glm.vec3(1, 0, 0))
    line(y_axis, glm.vec3(0, 0, 0), glm.vec3(0, 1, 0))
    line(z_axis, glm.vec3(0, 0, 0), glm.vec3(0, 0, 1))
    glEnd()


class MyWindow:

    def __init__(self, w, h):
        self.width = w
        self.height = h

        glutInit()
        glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH)
        glutInitWindowSize(w, h)
        glutCreateWindow('OpenGL Window')

        self.startup()

        glutReshapeFunc(self.reshape)
        glutDisplayFunc(self.display)
        glutMouseFunc(self.controller.glut_mouse)
        glutMotionFunc(self.controller.glut_motion)
        glutMouseWheelFunc(self.controller.glut_mouse_wheel)
        glutKeyboardFunc(self.keyboard_func)
        glutIdleFunc(self.idle_func)

    def keyboard_func(self, *args):
        try:
            key = args[0].decode("utf8")

            if key == "\x1b":
                glutLeaveMainLoop()

            if key in ['1', '2', '3', '4']:
                if key == '1':
                    self.index_camera = "Skatic"
                elif key == '2':
                    self.index_camera = "BPL"
                elif key == '3':
                    self.index_camera = "Rabbid76_v1"
                elif key == '4':
                    self.index_camera = "Rabbid76_v2"

                self.camera = self.cameras[self.index_camera]
                self.controller.camera = self.camera

            if key in ['o', 'p']:
                self.camera.eye = glm.vec3(0, 10, 10)
                self.camera.target = glm.vec3(0, 0, 0)

                if key == 'o':
                    self.yup = True
                    # self.camera.up = glm.vec3(0, 0, 1)
                elif key == 'p':
                    self.yup = False
                    # self.camera.up = glm.vec3(0, 1, 0)

                self.camera.target = glm.vec3(0, 0, 0)

        except Exception as e:
            import traceback
            traceback.print_exc()

    def startup(self):
        glEnable(GL_DEPTH_TEST)

        aspect = self.width / self.height
        params = {
            "eye": glm.vec3(0, 100, 100),
            "target": glm.vec3(0, 0, 0),
            "up": glm.vec3(0, 1, 0)
        }
        self.cameras = {
            "Skatic": CameraSkatic(**params),
            "BPL": CameraBPL(**params),
            "Rabbid76_v1": CameraRabbid76_v1(**params),
            "Rabbid76_v2": CameraRabbid76_v2(**params)
        }
        self.index_camera = "BPL"
        self.yup = True
        self.camera = self.cameras[self.index_camera]
        self.model = glm.mat4(1)
        self.controller = GlutController(self.camera)

    def run(self):
        glutMainLoop()

    def idle_func(self):
        glutPostRedisplay()

    def reshape(self, w, h):
        glViewport(0, 0, w, h)
        self.width = w
        self.height = h

    def display(self):
        self.camera.update(self.width / self.height)

        glClearColor(0.2, 0.3, 0.3, 1.0)
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

        self.camera.load_projection()
        self.camera.load_modelview()

        glLineWidth(5)
        axis(size=70, yup=self.yup)
        glLineWidth(1)
        grid(segment_count=7, spacing=10, yup=self.yup)

        glMatrixMode(GL_PROJECTION)
        glLoadIdentity()
        glOrtho(-1, 1, -1, 1, -1, 1)
        glMatrixMode(GL_MODELVIEW)
        glLoadIdentity()

        info = "\n".join([
            "1: Skatic Camera",
            "2: BPL Camera",
            "3: Rabbid76 Camera (version1)",
            "4: Rabbid76 Camera (version2)",
            "o: RHS Scene Y-UP",
            "p: RHS Scene Z-UP",
        ])
        render_text(-1.0, 1.0 - 0.1, info)
        render_text(-1.0, -1.0, "{} camera is active, scene is {}".format(self.index_camera, "Y-UP" if self.yup else "Z-UP"))

        glutSwapBuffers()


if __name__ == '__main__':
    window = MyWindow(800, 600)
    window.run()
0 голосов
/ 04 января 2019

Я рекомендую сделать поворот вокруг оси в пространстве вида

Вы должны знать матрицу вида (V).Поскольку матрица вида закодирована в self.eye, self.target и self.up, ее необходимо вычислить как lookAt:

V = glm.lookAt(self.eye, self.target, self.up)

. Вычислить pivot в пространстве вида, угол поворотаи ось вращения.В этом случае ось повернута вправо, где необходимо перевернуть ось y:

pivot = glm.vec3(V * glm.vec4(target.x, target.y, target.z, 1))
axis  = glm.vec3(-delta.y, -delta.x, 0)
angle = glm.length(delta)

Установите матрицу вращения R и вычислите матрицу рациона вокруг оси RP.Наконец преобразуйте матрицу вида (V) с помощью матрицы вращения.Результатом является новая матрица представления NV:

R  = glm.rotate( glm.mat4(1), angle, axis )
RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
NV = RP * V

Декодирование self.eye, self.target и self.up из новой матрицы просмотра NV:

C = glm.inverse(NV)
targetDist  = glm.length(self.target - self.eye)
self.eye    = glm.vec3(C[3])
self.target = self.eye - glm.vec3(C[2]) * targetDist 
self.up     = glm.vec3(C[1])

Полное кодирование метода rotate_around_target_view:

def rotate_around_target_view(self, target, delta):

    V = glm.lookAt(self.eye, self.target, self.up)

    pivot = glm.vec3(V * glm.vec4(target.x, target.y, target.z, 1))
    axis  = glm.vec3(-delta.y, -delta.x, 0)
    angle = glm.length(delta)

    R  = glm.rotate( glm.mat4(1), angle, axis )
    RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
    NV = RP * V

    C = glm.inverse(NV)
    targetDist  = glm.length(self.target - self.eye)
    self.eye    = glm.vec3(C[3])
    self.target = self.eye - glm.vec3(C[2]) * targetDist 
    self.up     = glm.vec3(C[1])

Наконец, его можно повернуть вокруг источника мира и положения глаза или даже любой другой точки.

def rotate_around_origin(self, delta):
    return self.rotate_around_target_view(glm.vec3(0), delta)

def rotate_target(self, delta):
    return self.rotate_around_target_view(self.eye, delta)

В качестве альтернативы вращение может быть выполнено в мировом пространстве на модели.Решение очень похоже.Вращение выполняется в мировом пространстве, поэтому поворот не должен преобразовываться для просмотра пространства. Поворот применяется перед матрицей просмотра (NV = V * RP):

def rotate_around_target_world(self, target, delta):

    V = glm.lookAt(self.eye, self.target, self.up)

    pivot = target
    axis  = glm.vec3(-delta.y, -delta.x, 0)
    angle = glm.length(delta)

    R  = glm.rotate( glm.mat4(1), angle, axis )
    RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
    NV = V * RP

    C = glm.inverse(NV)
    targetDist  = glm.length(self.target - self.eye)
    self.eye    = glm.vec3(C[3])
    self.target = self.eye - glm.vec3(C[2]) * targetDist 
    self.up     = glm.vec3(C[1]) 

def rotate_around_origin(self, delta):
    return self.rotate_around_target_world(glm.vec3(0), delta)

Конечно, обарешения могут быть объединены.Перетаскивая по вертикали (вверх и вниз), вид можно вращать вокруг своей горизонтальной оси.А путем перетаскивания по горизонтали (влево и вправо) модель (мир) можно вращать вокруг своей (вверх) оси:

def rotate_around_target(self, target, delta):
    if abs(delta.x) > 0:
        self.rotate_around_target_world(target, glm.vec3(delta.x, 0.0, 0.0))
    if abs(delta.y) > 0:    
        self.rotate_around_target_view(target, glm.vec3(0.0, delta.y, 0.0))

Я приказываю добиться минимально инвазивного подхода, учитывая исходный кодНа вопрос я сделаю следующее предложение:

  • После манипуляции целью представления должен быть входной параметр target функции rotate_around_target.

  • Горизонтальное движение мыши должно вращать представление вокруг вектора вверх мира

  • вертикальное движение мыши должно наклонять представление вокруг текущей горизонтальной оси

Я пришел к следующему подходу:

  1. Рассчитать текущую линию визирования (los), вектор вверх (up) и горизонтальось (right)

  2. Вертикальный вектор вверх, проецируя вектор вверх на плоскость, заданную исходным вектором вверх и текущей линией визирования.Это достигается путем ортогонализации по Граму – Шмидту .

  3. Наклон вокруг текущей горизонтальной оси.Это означает, что los и up вращаются вокруг оси right.

  4. Вращаться вокруг вектора вверх.los и right вращаются вокруг up.

  5. Рассчитать настройку и вычислить глаз и целевую позицию, где цель установлена ​​входным параметром target:

def rotate_around_target(self, target, delta):

    # get directions
    los    = self.target - self.eye
    losLen = glm.length(los)
    right  = glm.normalize(glm.cross(los, self.up))
    up     = glm.cross(right, los)

    # upright up vector (Gram–Schmidt orthogonalization)
    fix_right = glm.normalize(glm.cross(los, self.original_up))
    UPdotX    = glm.dot(fix_right, up)
    up        = glm.normalize(up - UPdotX * fix_right)
    right     = glm.normalize(glm.cross(los, up))
    los       = glm.cross(up, right)

    # tilt around horizontal axis
    RHor = glm.rotate(glm.mat4(1), delta.y, right)
    up   = glm.vec3(RHor * glm.vec4(up, 0.0))
    los  = glm.vec3(RHor * glm.vec4(los, 0.0))

    # rotate around up vector
    RUp   = glm.rotate(glm.mat4(1), delta.x, up)
    right = glm.vec3(RUp * glm.vec4(right, 0.0))
    los   = glm.vec3(RUp * glm.vec4(los, 0.0))

    # set eye, target and up
    self.eye    = target - los * losLen 
    self.target = target
    self.up     = up    
...