Вы можете использовать пакет regressors для вывода значений p, используя:
from regressors import stats
stats.coef_pval(rr_scaled, X_train, Y_train)
Вы также можете распечатать сводку регрессии (содержащую ошибки std, значения t, значения p, R^ 2) используя:
stats.summary(rr_scaled, X_train, Y_train)
Пример:
df = pd.DataFrame({'y':np.random.randn(10), 'x1':np.random.randn(10), 'x2':np.random.randn(10)})
# y x1 x2
# 0 -0.228546 0.133703 0.624039
# 1 -1.005794 1.064283 1.527229
# 2 -2.180160 -1.485611 -0.471199
# 3 -0.683695 -0.213433 -0.692055
# 4 -0.451981 -0.133173 0.995683
# 5 -0.166878 -0.384913 0.255065
# 6 0.816602 -0.380910 0.381321
# 7 -0.408240 1.116328 1.163418
# 8 -0.899570 -1.055483 -0.470597
# 9 0.926600 -1.497506 -0.523385
X_train = df[['x1','x2']]
Y_train = df.y
alphas = np.linspace(.00001, 2, 1)
rr_scaled = RidgeCV(alphas = alphas, cv =5, normalize = True)
rr_scaled.fit(X_train, Y_train)
Вызов stats.coef_pval
:
stats.coef_pval(rr_scaled, X_train, Y_train)
# array([0.17324576, 0.77225007, 0.74614808])
Теперь, вызов stats.summary
:
stats.summary(rr_scaled, X_train, Y_train)
# Residuals:
# Min 1Q Median 3Q Max
# -1.3347 -0.2368 0.0038 0.3636 1.7804
# Coefficients:
# Estimate Std. Error t value p value
# _intercept -0.522607 0.353333 -1.4791 0.173246
# x1 -0.143694 0.481720 -0.2983 0.772250
# x2 0.192431 0.576419 0.3338 0.746148
# ---
# R-squared: 0.00822, Adjusted R-squared: -0.27515
# F-statistic: 0.03 on 2 features