Пошаговая регрессия с использованием p-значений для отбрасывания переменных с незначимыми p-значениями - PullRequest
28 голосов
/ 13 сентября 2010

Я хочу выполнить пошаговую линейную регрессию , используя p-значения в качестве критерия выбора, например: на каждом шаге отбрасывание переменных, которые имеют самые высокие, то есть самые незначительные p-значенияостановка, когда все значения значимы, определенные некоторым порогом alpha .

Я полностью осознаю, что мне следует использовать AIC (например, команда step или stepAIC) или какой-то другой критерий, но мой босс не разбирается в статистике и настаивает на использовании p-значений.

При необходимости я мог бы запрограммировать свою собственную программу, но мне интересно, есть лиуже реализована версия этого.

Ответы [ 6 ]

28 голосов
/ 13 сентября 2010

Покажите вашему боссу следующее:

set.seed(100)
x1 <- runif(100,0,1)
x2 <- as.factor(sample(letters[1:3],100,replace=T))

y <- x1+x1*(x2=="a")+2*(x2=="b")+rnorm(100)
summary(lm(y~x1*x2))

Что дает:

            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -0.1525     0.3066  -0.498  0.61995    
x1            1.8693     0.6045   3.092  0.00261 ** 
x2b           2.5149     0.4334   5.802 8.77e-08 ***
x2c           0.3089     0.4475   0.690  0.49180    
x1:x2b       -1.1239     0.8022  -1.401  0.16451    
x1:x2c       -1.0497     0.7873  -1.333  0.18566    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Теперь, исходя из p-значений, вы бы исключили, какое из них? x2 является наиболее значимым и наиболее не значимым одновременно.


Редактировать: уточнить: этот пример не самый лучший, как указано в комментариях. Процедура в Stata и SPSS является AFAIK также не на основе p-значений T-критерия для коэффициентов, а на F-критерии после удаления одной из переменных.

У меня есть функция, которая делает именно это. Это выборка по «р-значению», но не по критерию Т для коэффициентов или результатов анова. Ну, не стесняйтесь использовать его, если он выглядит полезным для вас.

#####################################
# Automated model selection
# Author      : Joris Meys
# version     : 0.2
# date        : 12/01/09
#####################################
#CHANGE LOG
# 0.2   : check for empty scopevar vector
#####################################

# Function has.interaction checks whether x is part of a term in terms
# terms is a vector with names of terms from a model
has.interaction <- function(x,terms){
    out <- sapply(terms,function(i){
        sum(1-(strsplit(x,":")[[1]] %in% strsplit(i,":")[[1]]))==0
    })
    return(sum(out)>0)
}

# Function Model.select
# model is the lm object of the full model
# keep is a list of model terms to keep in the model at all times
# sig gives the significance for removal of a variable. Can be 0.1 too (see SPSS)
# verbose=T gives the F-tests, dropped var and resulting model after 
model.select <- function(model,keep,sig=0.05,verbose=F){
      counter=1
      # check input
      if(!is(model,"lm")) stop(paste(deparse(substitute(model)),"is not an lm object\n"))
      # calculate scope for drop1 function
      terms <- attr(model$terms,"term.labels")
      if(missing(keep)){ # set scopevars to all terms
          scopevars <- terms
      } else{            # select the scopevars if keep is used
          index <- match(keep,terms)
          # check if all is specified correctly
          if(sum(is.na(index))>0){
              novar <- keep[is.na(index)]
              warning(paste(
                  c(novar,"cannot be found in the model",
                  "\nThese terms are ignored in the model selection."),
                  collapse=" "))
              index <- as.vector(na.omit(index))
          }
          scopevars <- terms[-index]
      }

      # Backward model selection : 

      while(T){
          # extract the test statistics from drop.
          test <- drop1(model, scope=scopevars,test="F")

          if(verbose){
              cat("-------------STEP ",counter,"-------------\n",
              "The drop statistics : \n")
              print(test)
          }

          pval <- test[,dim(test)[2]]

          names(pval) <- rownames(test)
          pval <- sort(pval,decreasing=T)

          if(sum(is.na(pval))>0) stop(paste("Model",
              deparse(substitute(model)),"is invalid. Check if all coefficients are estimated."))

          # check if all significant
          if(pval[1]<sig) break # stops the loop if all remaining vars are sign.

          # select var to drop
          i=1
          while(T){
              dropvar <- names(pval)[i]
              check.terms <- terms[-match(dropvar,terms)]
              x <- has.interaction(dropvar,check.terms)
              if(x){i=i+1;next} else {break}              
          } # end while(T) drop var

          if(pval[i]<sig) break # stops the loop if var to remove is significant

          if(verbose){
             cat("\n--------\nTerm dropped in step",counter,":",dropvar,"\n--------\n\n")              
          }

          #update terms, scopevars and model
          scopevars <- scopevars[-match(dropvar,scopevars)]
          terms <- terms[-match(dropvar,terms)]

          formul <- as.formula(paste(".~.-",dropvar))
          model <- update(model,formul)

          if(length(scopevars)==0) {
              warning("All variables are thrown out of the model.\n",
              "No model could be specified.")
              return()
          }
          counter=counter+1
      } # end while(T) main loop
      return(model)
}
18 голосов
/ 14 июня 2012

Почему бы не попробовать использовать функцию step(), указав ваш метод тестирования?

Например, для обратного исключения вы вводите только команду:

step(FullModel, direction = "backward", test = "F")

и для пошагового выбора просто:

step(FullModel, direction = "both", test = "F")

Здесь могут отображаться как значения AIC, так и значения F и P.

10 голосов
/ 13 сентября 2010

Вот пример. Начните с самой сложной модели: это включает взаимодействия между всеми тремя объясняющими переменными.

model1 <-lm (ozone~temp*wind*rad)
summary(model1)

Coefficients:
Estimate Std.Error t value Pr(>t)
(Intercept) 5.683e+02 2.073e+02 2.741 0.00725 **
temp          -1.076e+01 4.303e+00 -2.501 0.01401 *
wind          -3.237e+01 1.173e+01 -2.760 0.00687 **
rad           -3.117e-01 5.585e-01 -0.558 0.57799
temp:wind      2.377e-01 1.367e-01 1.739 0.08519   
temp:rad       8.402e-03 7.512e-03 1.119 0.26602
wind:rad       2.054e-02 4.892e-02 0.420 0.47552
temp:wind:rad -4.324e-04 6.595e-04 -0.656 0.51358

Трехстороннее взаимодействие явно несущественно. Вот как вы удалите его, чтобы начать процесс упрощения модели:

model2 <- update(model1,~. - temp:wind:rad)
summary(model2)

В зависимости от результатов вы можете продолжить упрощение модели:

model3 <- update(model2,~. - temp:rad)
summary(model3)
...

В качестве альтернативы вы можете использовать функцию автоматического упрощения модели step, чтобы увидеть насколько хорошо это делает:

model_step <- step(model1)
7 голосов
/ 02 декабря 2011

Пакет rms: Стратегии регрессионного моделирования имеет fastbw(), который делает именно то, что вам нужно.Существует даже параметр для переключения с AIC на исключение на основе p-значения.

7 голосов
/ 21 сентября 2010

Если вы просто пытаетесь получить лучшую прогностическую модель, то, возможно, это не имеет большого значения, но ни в коем случае не беспокойтесь о таком выборе моделей.Это неправильно.

Используйте методы усадки, такие как регрессия гребня (например, в lm.ridge() в пакете MASS), или лассо, или эластик (сочетание ограничений гребня и лассо).Из них только лассо и эластичная сетка будут выполнять какую-либо форму выбора модели, то есть приводить к нулю коэффициенты некоторых ковариат.вид на CRAN.

0 голосов
/ 22 ноября 2018

Как упоминал Гэвин Симпсон, функция fastbw из пакета rms может использоваться для выбора переменных с использованием значения p. Ниже приведен пример, приведенный Джорджем Донтасом. Используйте параметр rule='p', чтобы выбрать критерий p-значения.

require(rms)
model1 <- ols(Ozone ~ Temp * Wind * Solar.R, data=airquality)
model2 <- fastbw(fit=model1, rule="p", sls=0.05)
model2
...