Скажем, у меня есть (упрощенная) рекурсивная грамматика, подобная этой:
OrExpr := AndExpr % "or"
AndExpr := Term % "and"
Term := ParenExpr | String
ParenExpr := '(' >> OrExpr >> ')'
String := lexeme['"' >> *(char_ - '"') >> '"']
Так что это работает, но проблема в том, что это обернет все в несколько слоев выражения.Например, строка "hello" and ("world" or "planet" or "globe")
будет анализироваться как OrExpr(AndExpr("hello", OrExpr(AndExpr("world"), AndExpr("planet"), AndExpr("globe"))))
(играть быстро и свободно с синтаксисом, но, надеюсь, вы понимаете).Мне бы хотелось, чтобы одноэлементные узлы были свернуты в своих родительских узлах, чтобы в итоге получилось AndExpr("hello", OrExpr("world", "parent", "globe"))
. Это можно решить с помощью действий и использования конечного автомата, который создает только внешниеобъект, если внутри него более одного ребенка.Но мне интересно, есть ли способ исправить эту проблему без использования парсера?
РЕДАКТИРОВАТЬ: Почти минимальный пример
Coliru
#include <boost/spirit/home/x3.hpp>
#include <boost/spirit/home/x3/support/ast/variant.hpp>
#include <boost/fusion/include/adapt_struct.hpp>
#include <iostream>
namespace x3 = boost::spirit::x3;
namespace burningmime::setmatch::ast
{
// an expression node (either an AND or an OR)
struct Expr;
// child of an expression -- either another expression, or a terminal
struct Node : x3::variant<std::string, x3::forward_ast<Expr>>
{
using base_type::base_type;
using base_type::operator=;
};
// tags for expression type
enum OPER
{
OPER_AND = 1,
OPER_OR = 2
};
// see above
struct Expr
{
OPER op;
std::vector<Node> children;
};
// for debugging purposes; this will print all the expressions
struct AstPrinter
{
void operator()(const Expr& node) const
{
std::cout << (node.op == OPER_AND ? "And(" : "Or(");
bool first = true;
for(const auto& child : node.children)
{
if(!first) std::cout << ", ";
first = false;
boost::apply_visitor(*this, child);
}
std::cout << ")";
}
void operator()(const std::string& node) const
{
std::cout << node;
}
};
}
// these need to be at top-level scope
// basically this adds compile-time type information, so the parser knows where to put various attributes
BOOST_FUSION_ADAPT_STRUCT(burningmime::setmatch::ast::Expr, op, children)
#define DECLARE_RULE(NAME, TYPE) static const x3::rule<class NAME, TYPE> NAME = #NAME;
#define KEYWORD(X) static const auto kw_##X = x3::no_case[#X];
#define DEFINE_RULE(NAME, GRAMMAR) \
static const auto NAME##_def = GRAMMAR; \
BOOST_SPIRIT_DEFINE(NAME)
namespace burningmime::setmatch::parser
{
// we need to pre-declare the rules so they can be used recursively
DECLARE_RULE(Phrase, std::string)
DECLARE_RULE(Term, ast::Node)
DECLARE_RULE(AndExpr, ast::Expr)
DECLARE_RULE(OrExpr, ast::Expr)
DECLARE_RULE(ParenExpr, ast::Expr)
// keywords
KEYWORD(and)
KEYWORD(or)
static const auto lparen = x3::lit('(');
static const auto rparen = x3::lit(')');
// helper parsers
static const auto keywords = kw_and | kw_or | lparen | rparen;
static const auto word = x3::lexeme[+(x3::char_ - x3::ascii::space - lparen - rparen)];
static const auto bareWord = word - keywords;
static const auto quotedString = x3::lexeme[x3::char_('"') >> *(x3::char_ - '"') >> x3::char_('"')];
DEFINE_RULE(Phrase, quotedString | bareWord)
DEFINE_RULE(Term, ParenExpr | Phrase)
DEFINE_RULE(ParenExpr, lparen >> OrExpr >> rparen)
DEFINE_RULE(AndExpr, x3::attr(ast::OPER_AND) >> (Term % kw_and))
DEFINE_RULE(OrExpr, x3::attr(ast::OPER_OR) >> (AndExpr % kw_or))
}
namespace burningmime::setmatch
{
void parseRuleFluent(const char* buf)
{
ast::Expr root;
auto start = buf, end = start + strlen(buf);
bool success = x3::phrase_parse(start, end, parser::OrExpr, x3::ascii::space, root);
if(!success || start != end)
throw std::runtime_error(std::string("Could not parse rule: ") + buf);
printf("Result of parsing: %s\n=========================\n", start);
ast::Node root2(root);
boost::apply_visitor(ast::AstPrinter(), root2);
}
}
int main()
{
burningmime::setmatch::parseRuleFluent(R"#("hello" and ("world" or "planet" or "globe"))#");
}