Доверительные интервалы для отношения шансов в CLMM / CLMM2 (R) - PullRequest
0 голосов
/ 15 октября 2018

Я пытаюсь найти лучший способ оценить доверительные интервалы для отношений шансов как часть результатов CLMM.Я работаю в R, и моя модель выглядит примерно так:

model <- clmm(Rating ~ Problem+Condition+(1|Subject), data = data, Hess=TRUE, nAGQ=10)

> summary(model)
Cumulative Link Mixed Model fitted with the adaptive Gauss-Hermite 
quadrature approximation with 10 quadrature points 

formula: Rating ~ Problem + Condition + (1 | Subject)
data:    data

 link  threshold nobs logLik   AIC     niter     max.grad cond.H 
 logit flexible  1106 -1114.39 2244.79 545(1638) 1.57e-03 3.1e+01

Random effects:
 Groups  Name        Variance Std.Dev.
 Subject (Intercept) 0.3296   0.5741  
Number of groups:  Subject 96 

Coefficients:
           Estimate Std. Error z value Pr(>|z|)    
Problem1    -0.9696     0.1814  -5.345 9.03e-08 ***
Problem2     0.7001     0.1715   4.083 4.45e-05 ***
Problem3    -0.1745     0.1711  -1.020   0.3078    
Condition1   0.3057     0.1440   2.124   0.0037 **  
Condition2   0.1103     0.1427   0.773   0.4396    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Я понимаю, что отношение шансов для оценок параметров просто exp (β).Есть ли способ рассчитать доверительные интервалы для отношения шансов?Открыты ли другие способы выразить величину этих эффектов?Спасибо!

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...