Prediction alert_Timeseries_Python_Machine Learning - PullRequest
0 голосов
/ 11 октября 2019

Мне нужен код предупреждения о предсказании для значения процессора в python. Мне нужно проверить, чтобы продолжать увеличивать значение процессора в зависимости от времени запуска. Условие предварительного предупреждения: 0–30 = зеленый, 30–50 = желтый, 50–70 = красный сигнал. фактическое состояние тревоги> 80> ?. У нас 6 серверов. Мне также нужно сначала отсортировать.

пример данных:

df_cpu_2_copy[["date","server","timestamp","time","cpu","cpu2","cpu3"]]
Out[31]: 
            date server   timestamp      time   cpu  cpu2   cpu3
0     2019-07-15    NaN  1563190205  11:30:05   0.2   NaN  False
1     2019-07-15    NaN  1563197405  13:30:05   0.2   0.2  False
2     2019-07-15    NaN  1563175805  07:30:05   0.5   0.2   True
3     2019-07-15    NaN  1563183005  09:30:05   0.8   0.5   True
4     2019-07-15    NaN  1563196204  13:10:04   0.8   0.8  False
5     2019-07-15    NaN  1563172205  06:30:05   1.5   0.8   True
6     2019-07-15    NaN  1563198484  13:48:04   1.5   1.5  False
7     2019-07-15    NaN  1563201004  14:30:04   1.8   1.5   True
8     2019-07-15    NaN  1563186605  10:30:05   2.2   1.8   True
9     2019-07-15    NaN  1563179404  08:30:04   2.9   2.2   True
10    2019-07-15    NaN  1563198605  13:50:05   3.0   2.9   True
11    2019-07-15    NaN  1563198125  13:42:05   3.8   3.0   True
12    2019-07-15    NaN  1563165004  04:30:04   4.0   3.8   True
13    2019-07-15    NaN  1563175805  07:30:05   4.0   4.0  False
14    2019-07-15    NaN  1563174605  07:10:05   4.2   4.0   True
15    2019-07-15    NaN  1563198244  13:44:04   4.5   4.2   True
16    2019-07-15    NaN  1563198365  13:46:05   5.1   4.5   True
17    2019-07-15    NaN  1563196085  13:08:05   5.2   5.1   True
18    2019-07-15    NaN  1563193805  12:30:05   5.4   5.2   True
19    2019-07-15    NaN  1563201004  14:30:04   6.2   5.4   True
20    2019-07-15    NaN  1563186605  10:30:05   7.4   6.2   True
21    2019-07-15    NaN  1563195484  12:58:04   7.6   7.4   True
22    2019-07-15    NaN  1563198305  13:45:05   8.1   7.6   True
23    2019-07-15    NaN  1563199204  14:00:04   8.5   8.1   True
24    2019-07-15    NaN  1563170405  06:00:05   8.9   8.5   True
25    2019-07-15    NaN  1563198664  13:51:04   8.9   8.9  False
26    2019-07-15    NaN  1563198425  13:47:05   9.2   8.9   True
27    2019-07-15    NaN  1563198185  13:43:05   9.5   9.2   True
28    2019-07-15    NaN  1563179404  08:30:04   9.6   9.5   True
29    2019-07-15    NaN  1563198725  13:52:05   9.6   9.6  False
         ...    ...         ...       ...   ...   ...    ...
8604  2019-07-14    NaN  1563141905  22:05:05  98.4  98.4  False
8605  2019-07-14    NaN  1563148684  23:58:04  98.4  98.4  False
8606  2019-07-14    NaN  1563144125  22:42:05  98.5  98.4   True
8607  2019-07-14    NaN  1563144544  22:49:04  98.5  98.5  False
8608  2019-07-14    NaN  1563145144  22:59:04  98.5  98.5  False
8609  2019-07-14    NaN  1563145984  23:13:04  98.5  98.5  False
8610  2019-07-14    NaN  1563146585  23:23:05  98.5  98.5  False
8611  2019-07-15    NaN  1563153965  01:26:05  98.5  98.5  False
8612  2019-07-14    NaN  1563141664  22:01:04  98.5  98.5  False
8613  2019-07-14    NaN  1563143644  22:34:04  98.5  98.5  False
8614  2019-07-14    NaN  1563143824  22:37:04  98.5  98.5  False
8615  2019-07-14    NaN  1563146524  23:22:04  98.5  98.5  False
8616  2019-07-14    NaN  1563142085  22:08:05  98.5  98.5  False
8617  2019-07-14    NaN  1563139024  21:17:04  98.6  98.5   True
8618  2019-07-14    NaN  1563142384  22:13:04  98.6  98.6  False
8619  2019-07-14    NaN  1563143164  22:26:04  98.6  98.6  False
8620  2019-07-14    NaN  1563145324  23:02:04  98.6  98.6  False
8621  2019-07-14    NaN  1563146344  23:19:04  98.6  98.6  False
8622  2019-07-14    NaN  1563146524  23:22:04  98.6  98.6  False
8623  2019-07-14    NaN  1563146884  23:28:04  98.6  98.6  False
8624  2019-07-14    NaN  1563141664  22:01:04  98.7  98.6   True
8625  2019-07-14    NaN  1563141904  22:05:04  98.7  98.7  False
8626  2019-07-14    NaN  1563142264  22:11:04  98.7  98.7  False
8627  2019-07-14    NaN  1563143345  22:29:05  98.7  98.7  False
8628  2019-07-14    NaN  1563143825  22:37:05  98.7  98.7  False
8629  2019-07-14    NaN  1563148324  23:52:04  98.7  98.7  False
8630  2019-07-14    NaN  1563144905  22:55:05  98.8  98.7   True
8631  2019-07-14    NaN  1563148744  23:59:04  99.0  98.8   True
8632  2019-07-14    NaN  1563144364  22:46:04  99.0  99.0  False
8633  2019-07-14    NaN  1563148445  23:54:05  99.1  99.0   True

[8634 rows x 7 columns]
...