Я пытаюсь тренировать модель Tensorflow с двумя классами. Мои данные тренинга сбалансированы (~ 11 тыс. Изображений для обоих классов). Я использую Tranferlearning и пытаюсь продолжить на модели InceptionV3 со следующим кодом:
BUFFER_SIZE = 1000
BATCH_SIZE = 32
def get_label(file_path, class_names):
# convert the path to a list of path components
parts = tf.strings.split(file_path, os.path.sep)
# The second to last is the class-directory
return parts[-2] == class_names
def parse_image(filename):
parts = tf.strings.split(filename, "\\")
label = get_label(filename, CLASS_NAMES)
image = tf.io.read_file(filename)
image = tf.image.decode_png(image, channels=3)
image = tf.image.convert_image_dtype(image, tf.float32)
image = tf.image.resize(image, [299,299])/255.0
return image, label
datasetFilePath = "Path\To\BalancedData"
IMAGESIZE = 299
AUTOTUNE = tf.data.experimental.AUTOTUNE
datasetPath = pathlib.Path(datasetFilePath)
list_ds = tf.data.Dataset.list_files(str(datasetPath/"*/*"))
CLASS_NAMES = np.array([item.name for item in datasetPath.glob('*')])
# labeled_ds = list_ds.map(process_path)
images_ds = list_ds.map(parse_image, num_parallel_calls=AUTOTUNE)
images_ds = images_ds.shuffle(BATCH_SIZE)
dataset = images_ds.batch(BATCH_SIZE, drop_remainder=True)
for image_batch, label_batch in dataset.take(1):
pass
def build_and_compile_model():
base_model =tf.keras.applications.InceptionV3(include_top=False, weights = "imagenet", input_shape=(IMAGESIZE,IMAGESIZE,3))
feature_batch = base_model(image_batch)
print(feature_batch.shape)
base_model.trainable = False
x = base_model.output
x = tf.keras.layers.GlobalAveragePooling2D(name="avg_pool")(x)
x = tf.keras.layers.Dense(256, activation="relu")(x)
predictions = tf.keras.layers.Dense(2, activation="softmax")(x)
model = tf.keras.models.Model(inputs=base_model.input, outputs=predictions)
base_learning_rate = 0.00001
model.compile(optimizer=tf.keras.optimizers.Adam(lr=base_learning_rate),
loss="categorical_crossentropy",
metrics=["accuracy"])
return model
multi_worker_model = build_and_compile_model()
tensorboard = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
history = multi_worker_model.fit(dataset, epochs=2, callbacks=[tensorboard])
=>Epoch 1/2
=>711/711 [==============================] - 176s 247ms/step - loss: 0.3309 - accuracy: 0.8945
=>Epoch 2/2
=>711/711 [==============================] - 166s 233ms/step - loss: 0.1410 - accuracy: 0.9632
predictions = multi_worker_model.evaluate(dataset)
=>711/711 [==============================] - 150s 212ms/step - loss: 0.7538 - accuracy: 0.4999
Так что в целом моя модель просто предсказывает, что все относится к классу 1, и я не понимаю, почему это так, и в основном почему он утверждает, что имеет точность обучения 96%
. Это может быть проблемой данных, но опять же, я бы ожидал, что точность обучения также составляет ~ 50%, так как и обучение, и оценка происходят в одном наборе данных .
Любая помощь будет принята с благодарностью, и если вам нужна дополнительная информация, дайте мне знать!