поэтому я попытался составить классификационный отчет для своего проекта машинного обучения. Это переводчик с языка коренного населения, использующий отдельные символы в качестве наборов данных (python 3.6), который он запускает, он может показать мне точность, матрицу путаницы, но он не показывает мне моя оценка F1 и другие из моего классификационного отчета
import numpy
import numpy as np
from sklearn.linear_model import LogisticRegression
from tensorflow import keras, metrics
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Model
from sklearn.metrics import confusion_matrix
import itertools
import matplotlib.pyplot as plt
from webencodings import labels
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
train_path=r'C:\Users\Acer\imagerec\BAYBAYIN\TRAIN'
valid_path=r'C:\Users\Acer\imagerec\BAYBAYIN\VAL'
test_path=r'C:\Users\Acer\imagerec\BAYBAYIN\TEST'
batch_size=30
class_labels=['A', 'BA', 'KA', 'GA', 'HA', '1', '2', '3', '4', '5', '6', '7',
'8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
'20', '21', '22', '23', '24', '25', '26', '28', '29', '30', '31', '32',
'33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44']
train_batches=ImageDataGenerator(preprocessing_function=keras.applications.xception.preprocess_input)\
.flow_from_directory(train_path, target_size=(299,299),classes=class_labels,batch_size=5)
valid_batches=ImageDataGenerator(preprocessing_function=keras.applications.xception.preprocess_input)\
.flow_from_directory(valid_path, target_size=(299,299),classes=class_labels,batch_size=5)
test_batches=ImageDataGenerator(preprocessing_function=keras.applications.xception.preprocess_input)\
.flow_from_directory(test_path, target_size=(299,299),classes=class_labels,batch_size=5, shuffle=False)
base_model=keras.applications.vgg19.VGG19(include_top=False)
x=base_model.output
x=GlobalAveragePooling2D()(x)
x=Dense(1024, activation='relu')(x)
x=Dense(48, activation='softmax')(x)
model=Model(inputs=base_model.input, outputs=x)
base_model.trainable = False
N=1
print("HANG ON LEARNING IN PROGRESS...")
model.compile(Adam(lr=.0001),loss='categorical_crossentropy', metrics=['accuracy'])
history=model.fit_generator(train_batches, steps_per_epoch=1290, validation_data=valid_batches,
validation_steps=90,epochs=N,verbose=1)
print("[INFO]evaluating model...")
test_labels=test_batches.classes
predictions=model.predict_generator(test_batches, steps=28, verbose=1)
import matplotlib.pyplot as plt
import numpy as np
plt.imshow(np.random.random((48,48)), interpolation='nearest')
plt.xticks(np.arange(0,48), ['A', 'BA', 'KA', 'GA', 'HA', '1', '2', '3', '4', '5', '6', '7',
'8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
'20', '21', '22', '23', '24', '25', '26', '28', '29', '30', '31', '32',
'33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44'])
plt.yticks(np.arange(0,48),['A', 'BA', 'KA', 'GA', 'HA', '1', '2', '3', '4', '5', '6', '7',
'8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
'20', '21', '22', '23', '24', '25', '26', '28', '29', '30', '31', '32',
'33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44'])
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_path.flow_from_directory(
train_path,
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
valid_path,
batch_size=batch_size,
class_mode='categorical')
model.fit_generator(
train_generator,
steps_per_epoch= 52800 // batch_size,
epochs=N,
validation_data=validation_generator,
validation_steps= 13200 // batch_size)
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sns
test_steps_per_epoch = numpy.math.ceil(validation_generator.samples / validation_generator.batch_size)
predictions = model.predict_generator(validation_generator, steps=test_steps_per_epoch)
test_steps_per_epoch = numpy.math.ceil(validation_generator.samples / validation_generator.batch_size)
predicted_classes = numpy.argmax(predictions, axis=1)
true_classes = validation_generator.classes
class_labels = list(validation_generator.class_indices.keys())
report = classification_report(true_classes, predicted_classes, target_names=class_labels)
print(report)
cm=confusion_matrix(true_classes,predicted_classes)
print(cm)
plt.show()
model.save("X19baybayin.h5")
Я получаю эти ошибки, я не знаю, почему
Traceback (most recent call last):
File "C:/Users/Acer/PycharmProjects/translator/mine.py", line 80, in <module>
train_generator = train_path.flow_from_directory(
AttributeError: 'str' object has no attribute 'flow_from_directory'