При сравнении
with(mtcars, poly(wt, disp, degree=2))
with(mtcars, poly(wt, degree=2))
with(mtcars, poly(disp, degree=2))
1.0
2.0
относится к первой и второй степени wt
, а 0.1
0.2
относится к первой и второй степени disp
. 1.1
является термином взаимодействия. Вы можете проверить это, сравнив:
summary(lm(mpg ~ poly(wt, disp, degree=2, raw=T), data=mtcars))$coe
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 4.692786e+01 7.008139762 6.6961935 4.188891e-07
# poly(wt, disp, degree=2, raw=T)1.0 -1.062827e+01 8.311169003 -1.2787937 2.122666e-01
# poly(wt, disp, degree=2, raw=T)2.0 2.079131e+00 2.333864211 0.8908534 3.811778e-01
# poly(wt, disp, degree=2, raw=T)0.1 -3.172401e-02 0.060528241 -0.5241191 6.046355e-01
# poly(wt, disp, degree=2, raw=T)1.1 -2.660633e-02 0.032228884 -0.8255431 4.165742e-01
# poly(wt, disp, degree=2, raw=T)0.2 2.019044e-04 0.000135449 1.4906301 1.480918e-01
summary(lm(mpg ~ wt*disp + I(wt^2) + I(disp^2) , data=mtcars))$coe[c(1:2, 4:3, 6:5), ]
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 4.692786e+01 7.008139762 6.6961935 4.188891e-07
# wt -1.062827e+01 8.311169003 -1.2787937 2.122666e-01
# I(wt^2) 2.079131e+00 2.333864211 0.8908534 3.811778e-01
# disp -3.172401e-02 0.060528241 -0.5241191 6.046355e-01
# wt:disp -2.660633e-02 0.032228884 -0.8255431 4.165742e-01
# I(disp^2) 2.019044e-04 0.000135449 1.4906301 1.480918e-01
Это дает те же значения. Обратите внимание, что я использовал raw=TRUE
для сравнения.