Устранение ошибки «пустая модель» в перекрестной проверке для классификации SVM при использовании пакета CMA Bioconductor для R - PullRequest
5 голосов
/ 09 февраля 2011

Я использую пакет Bioconductor CMA для выполнения внутренней перекрестной проверки Монте-Карло (MCCV) на классификаторах SVM в наборе данных микрочипов.CMA внутренне использует пакет e1071 R для работы SVM.

Набор данных имеет 387 переменных (атрибутов) для 45 выборок (наблюдений), которые принадлежат одному из двух классов (метки 0 или 1; примерно 1: 1).пропорция).Все данные являются числовыми без NA.Я пробую 1000-итерационный MCCV с 15 переменными, выбранными для SVM, используя статистику лиммы для дифференциального анализа экспрессии генов.Во время MCCV часть набора из 45 выборок используется для обучения классификатора SVM, который затем используется для проверки оставшейся доли, и я пробую разные значения для доли обучающего набора.CMA также выполняет проверки по внутреннему контуру (по умолчанию 3-кратная перекрестная проверка в обучающих наборах), чтобы точно настроить классификаторы, которые будут использоваться для перекрестной проверки по проверочным наборам.Все это делается из пакета CMA.

Иногда при малых размерах обучающего набора CMA выдает ошибку в консоли и останавливает выполнение остальной части кода для классификации.

[snip]tuning iteration 575
tuning iteration 576
tuning iteration 577
Error in predict.svm(ret, xhold, decision.values = TRUE) :   Model is empty!

Это происходит даже тогда, когда я использую тест, отличный от лиммы, для выбора переменных или использую две вместо 15 переменных для генерации классификатора.Код R, который я использую, должен гарантировать, что обучающие наборы всегда имеют членов обоих классов.Буду признателен за любую информацию по этому вопросу.

Ниже приведен код R, который я использую, с Mac OS X 10.6.6, R 2.12.1, Biobase 2.10.0, CMA 1.8.1, limma 3.6.9,и WilcoxCV 1.0.2.Файл данных hy3ExpHsaMir.txt можно загрузить из http://rapidshare.com/files/447062901/hy3ExpHsaMir.txt.

Все идет нормально, пока g не станет 9 в для (g в 0:10) цикла (для изменения размеров обучения / тестового набора).


# exp is the expression table, a matrix; 'classes' is list of known classes
exp <- as.matrix(read.table(file='hy3ExpHsaMir.txt', sep='\t', row.names=1, header=T, check.names=F))
#best is to use 0 and 1 as class labels (instead of 'p', 'g', etc.) with 1 for 'positive' items (positive for recurrence, or for disease, etc.)
classes <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
yesPredVal = 1 # class label for 'positive' items in 'classes'

library(CMA)
library(WilcoxCV)
myNumFun <- function(x, y){round(y(as.numeric(x), na.rm=T), 4)}
set.seed(631)
out = ''
out2 = '\nEffect of varying the training-set size:\nTraining-set size\tSuccessful iterations\tMean acc.\tSD acc.\tMean sens.\tSD sens.\tMean spec.\tSD spec.\tMean PPV\tSD PPV\tMean NPV\tSD NPV\tTotal genes in the classifiers\n'

niter = 1000
diffTest = 'limma'
diffGeneNum = 15
svmCost <- c(0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50)

for(g in 0:10){ # varying the training/test-set sizes
 ntest = 3+g*3 # test-set size
 result <- matrix(nrow=0, ncol=7)
 colnames(result) <- c('trainSetSize', 'iteration', 'acc', 'sens', 'spec', 'ppv', 'npv')
 diffGenes <- numeric()

 # generate training and test sets
 lsets <- GenerateLearningsets(n=ncol(exp), y=classes, method=c('MCCV'), niter=niter, ntrain=ncol(exp)-ntest)

 # actual prediction work
 svm <- classification(t(exp), factor(classes), learningsets=lsets, genesellist= list(method=diffTest), classifier=svmCMA, nbgene= diffGeneNum, tuninglist=list(grids=list(cost=svmCost)), probability=TRUE)
 svm <- join(svm)
 # genes in classifiers
 svmGenes <- GeneSelection(t(exp), classes, learningsets=lsets, method=diffTest)

 actualIters=0
 for(h in 1:niter){
  m <- ntest*(h-1)
  # valid SVM classification requires min. 2 classes
  if(1 < length(unique(classes[-lsets@learnmatrix[h,]]))){
   actualIters = actualIters+1
   tp <- tn <- fp <- fn <- 0
   for(i in 1:ntest){
    pred <- svm@yhat[m+i]
    known <- svm@y[m+i]
    if(pred == known){
     if(pred == yesPredVal){tp <- tp+1}
     else{tn <- tn+1}
    }else{
     if(pred == yesPredVal){fp <- fp+1}
     else{fn <- fn+1}
    }
   }
   result <- rbind(result, c(ncol(exp)-ntest, h, (tp+tn)/(tp+tn+fp+fn), tp/(tp+fn), tn/(tn+fp), tp/(tp+fp), tn/(tn+fn)))
   diffGenes <- c(diffGenes, toplist(svmGenes, k=diffGeneNum, iter=h, show=F)$index)
  } # end if valid SVM
 } # end for h

 # output accuracy, etc.
 out = paste(out, 'SVM MCCV using ',  niter, ' attempted iterations and ', actualIters, ' successful iterations, with ', ncol(exp)-ntest, ' of ', ncol(exp), ' total samples used for training:\nThe means (ranges; SDs) of prediction accuracy, sensitivity, specificity, PPV and NPV in fractions are ', 
myNumFun(result[, 'acc'],mean), ' (', myNumFun(result[, 'acc'], min), '-', myNumFun(result[, 'acc'], max), '; ', myNumFun(result[, 'acc'], sd), '), ', 
 myNumFun(result[, 'sens'], mean), ' (', myNumFun(result[, 'sens'], min), '-', myNumFun(result[, 'sens'], max), '; ', myNumFun(result[, 'sens'], sd), '), ', 
 myNumFun(result[, 'spec'], mean), ' (', myNumFun(result[, 'spec'], min), '-', myNumFun(result[, 'spec'], max), '; ', myNumFun(result[, 'spec'], sd), '), ', 
 myNumFun(result[, 'ppv'], mean), ' (', myNumFun(result[, 'ppv'], min), '-', myNumFun(result[, 'ppv'], max), '; ', myNumFun(result[, 'ppv'], sd), '), and ', 
 myNumFun(result[, 'npv'], mean), ' (', myNumFun(result[, 'npv'], min), '-', myNumFun(result[, 'npv'], max), '; ', myNumFun(result[, 'npv'], sd), '), respectively.\n', sep='')

 # output classifier genes
 diffGenesUnq <- unique(diffGenes)
 out = paste(out, 'A total of ', length(diffGenesUnq), ' genes occur in the ', actualIters, ' classifiers, with occurrence frequencies in fractions:\n', sep='')
 for(i in 1:length(diffGenesUnq)){
  out = paste(out, rownames(exp)[diffGenesUnq[i]], '\t', round(sum(diffGenes == diffGenesUnq[i])/actualIters, 3), '\n', sep='')
 }

 # output split-size effect
 out2 = paste(out2, ncol(exp)-ntest, '\t', actualIters, '\t', myNumFun(result[, 'acc'], mean), '\t', myNumFun(result[, 'acc'], sd), '\t', myNumFun(result[, 'sens'], mean), '\t', myNumFun(result[, 'sens'], sd), '\t', myNumFun(result[, 'spec'], mean), '\t', myNumFun(result[, 'spec'], sd), '\t', myNumFun(result[, 'ppv'], mean), '\t', myNumFun(result[, 'ppv'], sd), 
'\t', myNumFun(result[, 'npv'], mean), '\t', myNumFun(result[, 'npv'], sd), '\t', length(diffGenesUnq), '\n', sep='')
} # end for g

cat(out, out2, sep='')

Выход для traceback ():

20: stop("Model is empty!")
19: predict.svm(ret, xhold, decision.values = TRUE)
18: predict(ret, xhold, decision.values = TRUE)
17: na.action(predict(ret, xhold, decision.values = TRUE))
16: svm.default(cost = 0.1, kernel = "linear", type = "C-classification", ...
15: svm(cost = 0.1, kernel = "linear", type = "C-classification", ...
14: do.call("svm", args = ll)
13: function (X, y, f, learnind, probability, models = FALSE, ...) ...
12: function (X, y, f, learnind, probability, models = FALSE, ...) ...
11: do.call(classifier, args = c(list(X = X, y = y, learnind = learnmatrix[i, ...
10: classification(X = c(83.5832768669369, 83.146333099001, 94.253534443549, ...
9: classification(X = c(83.5832768669369, 83.146333099001, 94.253534443549, ...
8: do.call("classification", args = c(list(X = Xi, y = yi, learningsets = lsi, ...
7: tune(grids = list(cost = c(0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50...
6: tune(grids = list(cost = c(0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50...
5: do.call("tune", args = c(tuninglist, ll))
4: classification(X, y = as.numeric(y) - 1, learningsets = learningsets, ...
3: classification(X, y = as.numeric(y) - 1, learningsets = learningsets, ...
2: classification(t(exp), factor(classes), learningsets = lsets, ...
1: classification(t(exp), factor(classes), learningsets = lsets, ...

1 Ответ

3 голосов
/ 10 февраля 2011

Сопровождающий пакета CMA быстро ответил на сообщение, которое я отправил об этой проблеме.

CMA настраивает классификатор, сгенерированный из обучающего набора, путем тестирования различных значений параметров в k-кратном шаге CV в обучающем наборе (по умолчанию k = 3). При небольших размерах обучающего набора этот внутренний цикл может потерпеть неудачу, если поднаборы будут проводиться только для одного класса. Два способа уменьшить вероятность этого состоят в том, чтобы сделать 2-кратное внутреннее CV и указать стратифицированную выборку, оба из которых требуют, чтобы шаг настройки вызывался отдельно через CMA tune () и использовал вывод в классификации () .

В коде, который я разместил, настройка вызывается из классификации () , которая не допускает стратифицированную выборку или 2-кратное CV. Тем не менее, использование tune () отдельно для стратифицированной выборки и двухкратного CV не помогло в моем случае. Это неудивительно, поскольку с небольшими обучающими наборами CMA встречает случаи с наборами членов только одного класса.

Я бы хотел, чтобы вместо внезапного завершения всего, CMA продолжал работать с оставшимися обучающими наборами, когда он сталкивался с такой проблемой с одним обучающим множеством. Также было бы неплохо, если бы при наличии этой проблемы CMA пробовал разные значения k для внутреннего k-кратного шага CV.

[Отредактировано 14 февраля] Генерация обучающих наборов CMA для CV не проверяет, достаточно ли членов обоих классов в обучающем наборе. Поэтому следующая замена части кода в исходном посте должна заставить вещи работать правильно:


numInnerFold = 3 # k for the k-fold inner validation called through tune()
# generate learning-sets with 2*niter members in case some have to be removed
lsets <- GenerateLearningsets(n=ncol(exp), y=classes, method=c('MCCV'), niter=2*niter, ntrain=ncol(exp)-ntest)
temp <- lsets@learnmatrix
for(i in 1:(2*niter)){
 unq <- unique(classes[lsets@learnmatrix[i, ]])
 if((2 > length(unique(classes[lsets@learnmatrix[i, ]])))
    | (numInnerFold > sum(classes[lsets@learnmatrix[i, ]] == yesPredVal))
    | (numInnerFold > sum(classes[lsets@learnmatrix[i, ]] != yesPredVal))){
  # cat('removed set', i,'\n')
  temp <- lsets@learnmatrix[-i, ]
 }
}
lsets@learnmatrix <- temp[1:niter, ]
lsets@iter <- niter

# genes in classifiers
svmGenes <- GeneSelection(t(exp), classes, learningsets=lsets, method=diffTest)
svmTune <- tune(t(exp), factor(classes), learningsets=lsets, genesel=svmGenes, classifier=svmCMA, nbgene=diffGeneNum, grids=list(cost=svmCost), strat=T, fold=numInnerFold)
# actual prediction work
svm <- classification(t(exp), factor(classes), learningsets=lsets, genesel=svmGenes, classifier=svmCMA, nbgene=diffGeneNum, tuneres=svmTune)
...