Я хочу сделать следующую функцию потерь в керасе:
Loss = mse + double_derivative(y_pred,x_train)
Я не могу включить производный термин. Я пробовал K.gradients(K.gradients(y_pred,x_train),x_train)
, но это не помогает.
Я получаю сообщение об ошибке:
AttributeError: объект 'NoneType' не имеет атрибута 'op'
def _loss_tensor(y_true, y_pred,x_train):
l1 = K.mean(K.square(y_true - y_pred), axis=-1)
sigma = 0.01
lamda = 3
term = K.square(sigma)*K.gradients(K.gradients(y_pred,x_train),x_train)
l2 = K.mean(lamda*K.square(term),axis=-1)
return l1+l2
def loss_func(x_train):
def loss(y_true,y_pred):
return _loss_tensor(y_true,y_pred,x_train)
return loss
def create_model_neural(learning_rate, num_layers,
num_nodes, activation):
model_neural = Sequential()
x_train = model_neural.add(Dense(num_nod, input_dim=num_input, activation=activation))
for i in range(num_layers-1):
model_neural.add(Dense(num_nodes,activation=activation,name=name))
model_neural.add(Dense(1, activation=activation))
optimizer = SGD(lr=learning_rate)
model_loss = loss_func(x_train=x_train)
model_neural.compile(loss=model_loss,optimizer=optimizer)
return model_neural