После статистически успешных тренировок результаты не отражаются таковыми через живую камеру. Как мне решить эту проблему? - PullRequest
0 голосов
/ 06 ноября 2019

Я использую TensorFlow для обнаружения упаковки молока в Linux. Используемый язык - Python. Используемая модель - более быстрый_rcnn_inception_v2_pets. Я новичок в машинном обучении. Это мой первый раз, когда я узнаю, как выполнять обнаружение объектов, пожалуйста, помогите!

Наш набор данных: мы сфотографировали каждую упаковку молока по отдельности (около 130 фотографий на упаковку молока) в одной и той же среде (на полке холодильника). Мы сделали смешанные фотографии нескольких коробок с молоком (около 400 фотографий).

Вот свидетельство того, что обучение предположительно было успешным: Доказательства 1 Доказательства 2 Доказательства 3

Вот какмы пометили коробки: Используя OpenLabeler

Вот изображение с камеры в реальном времени, которое не является точным (проблема): Доказательства

Код:

# Faster R-CNN with Inception v2, configured for Oxford-IIIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
  faster_rcnn {
    num_classes: 6
    image_resizer {
      keep_aspect_ratio_resizer {
        min_dimension: 600
        max_dimension: 1024
      }
    }
    feature_extractor {
      type: 'faster_rcnn_inception_v2'
      first_stage_features_stride: 16
    }
    first_stage_anchor_generator {
      grid_anchor_generator {
        scales: [0.25, 0.5, 1.0, 2.0]
        aspect_ratios: [0.5, 1.0, 2.0]
        height_stride: 16
        width_stride: 16
      }
    }
    first_stage_box_predictor_conv_hyperparams {
      op: CONV
      regularizer {
        l2_regularizer {
          weight: 0.0
        }
      }
      initializer {
        truncated_normal_initializer {
          stddev: 0.01
        }
      }
    }
    first_stage_nms_score_threshold: 0.0
    first_stage_nms_iou_threshold: 0.7
    first_stage_max_proposals: 300
    first_stage_localization_loss_weight: 2.0
    first_stage_objectness_loss_weight: 1.0
    initial_crop_size: 14
    maxpool_kernel_size: 2
    maxpool_stride: 2
    second_stage_box_predictor {
      mask_rcnn_box_predictor {
        use_dropout: false
        dropout_keep_probability: 1.0
        fc_hyperparams {
          op: FC
          regularizer {
            l2_regularizer {
              weight: 0.0
            }
          }
          initializer {
            variance_scaling_initializer {
              factor: 1.0
              uniform: true
              mode: FAN_AVG
            }
          }
        }
      }
    }
    second_stage_post_processing {
      batch_non_max_suppression {
        score_threshold: 0.0
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 300
      }
      score_converter: SOFTMAX
    }
    second_stage_localization_loss_weight: 2.0
    second_stage_classification_loss_weight: 1.0
  }
}

train_config: {
  batch_size: 1
  optimizer {
    momentum_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.0002
          decay_steps: 5000
          decay_factor: 0.9
        }
      }
      momentum_optimizer_value: 0.9
    }
    use_moving_average: false
  }
  gradient_clipping_by_norm: 10.0
  fine_tune_checkpoint: "/home/konbini/tensorflow1/models/research/object_detection/faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt"
  from_detection_checkpoint: true
  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the pets dataset. This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
  num_steps: 150000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
}


train_input_reader: {
  tf_record_input_reader {
    input_path: "/home/tensorflow1/models/research/object_detection/train.record"
  }
  label_map_path: "/home/tensorflow1/models/research/object_detection/training/labelmap.pbtxt"
}

eval_config: {
  num_examples: 288
  # Number of images in testing folder
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "/home/tensorflow1/models/research/object_detection/test.record"
  }
  label_map_path: "/home/tensorflow1/models/research/object_detection/training/labelmap.pbtxt"
  shuffle: false
  num_readers: 1
}

Когда мы сделали увеличение для любого изменения цвета, результаты ухудшились. Когда мы делали увеличение для любого вида вращения, результаты были одинаковыми. Доказательства

У меня два вопроса: есть ли проблемы с нашим набором данных? есть ли проблемы с нашим методом маркировки?

1 Ответ

0 голосов
/ 06 ноября 2019

Это может быть из-за того, что ваша модель слишком приспособлена для набора обучающих данных и поэтому недостаточно обобщена для обработки тестового набора данных. Я вижу, что вы не использовали методы дополнения, за исключением random_horizontal_flip в вашем конфигурационном файле, который мог бы помочь лучше обобщить вашу модель. Вы можете добавить методы увеличения в разделе train_config следующим образом:

train_config: {
  ...
  data_augmentation_options {
    random_rotation90 {
    }
  }
  data_augmentation_options {
    random_distort_color {
    }
  }
  data_augmentation_options {
    random_adjust_brightness {
    }
  }
  data_augmentation_options {
    random_adjust_contrast {
    }
  }
  .....
}

Все доступные методы увеличения можно найти в preprocessor.proto :

...