Обнаружение Tensorflow Object не работает, mAP low как увеличить - PullRequest
1 голос
/ 04 февраля 2020

Попытка заставить детектор объектов работать, чтобы обнаружить некоторые фрукты. Изначально попробовал на ssd_mobilenet_v2_coco_2018_03_29. Я пробежал около 50 тыс. Шагов, и потери постоянно показывали около 2 График общих потерь НО КАРТА была 0,48 для 1 класса и 0,16 для других КАРТА В общей сложности у меня есть 1936 изображений для обучения и 350 изображений для тестирования, поэтому я не уверен, где я ошибался, так как набор данных не маленький. Все изображения были собраны из изображений (https://github.com/openimages/dataset)

Конфигурация SSD:

# SSD with Mobilenet v2 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
  ssd {
    num_classes: 2
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            truncated_normal_initializer {
              stddev: 0.03
              mean: 0.0
            }
          }
          batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
          }
        }
      }
    }
    feature_extractor {
      type: 'ssd_mobilenet_v2'
      min_depth: 16
      depth_multiplier: 1.0
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        }
      }
    }
    loss {
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 3
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}

train_config: {
  batch_size: 24
  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.004
          decay_steps: 800720
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }
  fine_tune_checkpoint: "E:/objectdetect/model/research/object_detection/ssd_mobilenet_v2_coco_2018_03_29/model.ckpt"
  fine_tune_checkpoint_type:  "detection"
  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the pets dataset. This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
  num_steps: 200000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
}

train_input_reader: {
  tf_record_input_reader {
    input_path: "E:/objectdetect/model/research/object_detection/train.record"
  }
  label_map_path: "E:/objectdetect/model/research/object_detection/training/labelmap.pbtxt"
}

eval_config: {
  num_examples: 67
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
  max_evals: 10
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "E:/objectdetect/model/research/object_detection/test.record"
  }
  label_map_path: "E:/objectdetect/model/research/object_detection/training/labelmap.pbtxt"
  shuffle: false
  num_readers: 1
}

Затем я попробовал аналогичный тест с использованием Faster R-CNN вместо Я думал, что более высокая точность будет работать лучше, используя faster_rcnn_inception_v2_coco_2018_01_28

На этот раз у меня есть 3 класса. Содержит 2731 изображение для обучения и 446 для тестирования.

Более быстрая конфигурация R-CNN:

# Faster R-CNN with Inception v2, configured for Oxford-IIIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
  faster_rcnn {
    num_classes: 3
    image_resizer {
      keep_aspect_ratio_resizer {
        min_dimension: 600
        max_dimension: 1024
      }
    }
    feature_extractor {
      type: 'faster_rcnn_inception_v2'
      first_stage_features_stride: 16
    }
    first_stage_anchor_generator {
      grid_anchor_generator {
        scales: [0.25, 0.5, 1.0, 2.0]
        aspect_ratios: [0.5, 1.0, 2.0]
        height_stride: 16
        width_stride: 16
      }
    }
    first_stage_box_predictor_conv_hyperparams {
      op: CONV
      regularizer {
        l2_regularizer {
          weight: 0.0
        }
      }
      initializer {
        truncated_normal_initializer {
          stddev: 0.01
        }
      }
    }
    first_stage_nms_score_threshold: 0.0
    first_stage_nms_iou_threshold: 0.7
    first_stage_max_proposals: 300
    first_stage_localization_loss_weight: 2.0
    first_stage_objectness_loss_weight: 1.0
    initial_crop_size: 14
    maxpool_kernel_size: 2
    maxpool_stride: 2
    second_stage_box_predictor {
      mask_rcnn_box_predictor {
        use_dropout: false
        dropout_keep_probability: 1.0
        fc_hyperparams {
          op: FC
          regularizer {
            l2_regularizer {
              weight: 0.0
            }
          }
          initializer {
            variance_scaling_initializer {
              factor: 1.0
              uniform: true
              mode: FAN_AVG
            }
          }
        }
      }
    }
    second_stage_post_processing {
      batch_non_max_suppression {
        score_threshold: 0.0
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 300
      }
      score_converter: SOFTMAX
    }
    second_stage_localization_loss_weight: 2.0
    second_stage_classification_loss_weight: 1.0
  }
}

train_config: {
  batch_size: 1
  optimizer {
    momentum_optimizer: {
      learning_rate: {
        manual_step_learning_rate {
          initial_learning_rate: 0.0002
          schedule {
            step: 900000
            learning_rate: .00002
          }
          schedule {
            step: 1200000
            learning_rate: .000002
          }
        }
      }
      momentum_optimizer_value: 0.9
    }
    use_moving_average: false
  }
  gradient_clipping_by_norm: 10.0
  fine_tune_checkpoint: "/homes/nj303/objectdetect/model/research/object_detection/faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt"
  from_detection_checkpoint: true
  load_all_detection_checkpoint_vars: true
  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the pets dataset. This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
  num_steps: 200000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
}


train_input_reader: {
  tf_record_input_reader {
    input_path: "/homes/nj303/objectdetect/model/research/object_detection/train.record"
  }
  label_map_path: "/homes/nj303/objectdetect/model/research/object_detection/training/labelmap.pbtxt"
}

eval_config: {
  metrics_set: "coco_detection_metrics"
  num_examples: 67
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "/homes/nj303/objectdetect/model/research/object_detection/test.record"
  }
  label_map_path: "/homes/nj303/objectdetect/model/research/object_detection/training/labelmap.pbtxt"
  shuffle: false
  num_readers: 1
}

Однако я все еще получаю плохие результаты с точки зрения mAP. Я пробежал 100 тыс. Шагов, и потери варьируются ниже 0,1, но мАП составляет 0,38! Я не уверен, как это улучшить? mAP результаты для Faster R-CNN

Я новичок в этом, поэтому любая помощь будет оценена! Я не уверен, что я делаю неправильно!

1 Ответ

0 голосов
/ 04 февраля 2020

в этом виде простого обнаружения объектов вы можете лучше использовать opencv -> создать каскад хааров с каскадом gui trainer https://amin-ahmadi.com/cascade-trainer-gui/

'' 'import numpy as np import cv2

fruits_cascade = cv2.CascadeClassifier('haarcascade.xml') 
#make your own from the datasets


img = cv2.imread('fruit.jpg')
#reads your fruit checks for numpy array from the dataset you trained 

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#converts to gray, still nothing to worry about the accuracy

faces = face_cascade.detectMultiScale(gray, 1.3, 5)
#tune the value here its is 1.3 and 5 for better results these tuning is 
#already available in trainer 

for (x,y,w,h) in faces:
    img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
    roi_gray = gray[y:y+h, x:x+w]
    roi_color = img[y:y+h, x:x+w]
    eyes = eye_cascade.detectMultiScale(roi_gray)
    for (ex,ey,ew,eh) in eyes:
        cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
#searches for the numpy array and creates a box

cv2.imshow('img',img)
#displays your image
...