Я пытаюсь объединить модель keras, которая имеет несколько входов. Некоторые из этих входных данных являются категориальными, а некоторые - числовыми, поэтому у меня есть несколько слоев DenseFeature для встраивания значений.
Проблема в том, что при использовании tff.learning.from_keras_model () для ожидаем, что в качестве input_spe c будет словарь, содержащий всего 2 элемента (x, y), но у меня есть несколько входов, которые затем необходимо различить guish в модели, чтобы правильно выполнить встраивание с помощью функций feature_columns и слоев DenseFeature .
Как я могу обрабатывать столбцы с одиночными элементами, если модель принимает только 'x' в качестве ввода без правильных имен столбцов?
Спасибо
Вот код и ошибка:
def create_keras_model():
l = tf.keras.layers
# handling numerical columns
for header in numerical_column_names:
feature_columns.append(feature_column.numeric_column(header))
# handling the categorical feature
pickup = feature_column.categorical_column_with_vocabulary_list(
'pickup_location_id', [i for i in range(number_of_locations)])
#pickup_one_hot = feature_column.indicator_column(pickup)
#feature_columns.append(pickup_one_hot)
pickup_embedding = feature_column.embedding_column(pickup, dimension=64)
#feature_columns.append(pickup_embedding)
feature_inputs = {
'pickup_week_day_sin': tf.keras.Input((1,), name='pickup_week_day_sin'),
'pickup_week_day_cos': tf.keras.Input((1,), name='pickup_week_day_cos'),
'pickup_hour_sin': tf.keras.Input((1,), name='pickup_hour_sin'),
'pickup_hour_cos': tf.keras.Input((1,), name='pickup_hour_cos'),
'pickup_month_sin': tf.keras.Input((1,), name='pickup_month_sin'),
'pickup_month_cos': tf.keras.Input((1,), name='pickup_month_cos'),
}
numerical_features = l.DenseFeatures(feature_columns)(feature_inputs)#{'x': a}
location_input = {
'pickup_location_id': tf.keras.Input((1,), dtype=tf.dtypes.int32, name='pickup_location_id'),
}
categorical_features = l.DenseFeatures(pickup_embedding)(location_input)#{'x': a}
#i = l.Input(shape=(64+6,))
#embedded_lookup_feature = tf.feature_column.numeric_column('x', shape=(784))
conca = l.Concatenate()([categorical_features, numerical_features])
dense = l.Dense(128, activation='relu')(conca)
dense_1 = l.Dense(128, activation='relu')(dense)
dense_2 = layers.Dense(number_of_locations, kernel_initializer='zeros')(dense_1)
output = l.Softmax()(dense_2)
inputs = list(feature_inputs.values()) + list(location_input.values())
return tf.keras.Model(inputs=inputs, outputs=output)
input_spec = preprocessed_example_dataset.element_spec
def model_fn():
# We _must_ create a new model here, and _not_ capture it from an external
# scope. TFF will call this within different graph contexts.
keras_model = create_keras_model()
return tff.learning.from_keras_model(
keras_model,
input_spec=input_spec,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]
)
ошибка при вызове:
ValueError: The top-level structure in `dummy_batch` or `input_spec` must contain exactly two elements, as it must contain type information for both inputs to and predictions from the model.
preprocessed_example_dataset.element_spe c:
OrderedDict([('pickup_location_id',
TensorSpec(shape=(None,), dtype=tf.int32, name=None)),
('pickup_hour_sin',
TensorSpec(shape=(None,), dtype=tf.float32, name=None)),
('pickup_hour_cos',
TensorSpec(shape=(None,), dtype=tf.float32, name=None)),
('pickup_week_day_sin',
TensorSpec(shape=(None,), dtype=tf.float32, name=None)),
('pickup_week_day_cos',
TensorSpec(shape=(None,), dtype=tf.float32, name=None)),
('pickup_month_sin',
TensorSpec(shape=(None,), dtype=tf.float32, name=None)),
('pickup_month_cos',
TensorSpec(shape=(None,), dtype=tf.float32, name=None)),
('y', TensorSpec(shape=(None,), dtype=tf.int32, name=None))])