Я новичок в НЛП и углубленном изучении, поэтому у меня есть (вероятно) очень основная c проблема.
Я пытаюсь создать двоичный классификатор на основе предварительно обученных вложений BERT как особенности. До сих пор я успешно создал вложения и построил простую модель Sequential () с tenorsflow.keras. Код ниже работает:
model = tf.keras.Sequential([
Dense(4, activation = 'relu', input_shape = (768,)),
Dense(4, activation = 'relu'),
Dense(1, activation = 'sigmoid')])
model.compile(optimizer = 'adam',
loss = 'binary_crossentropy',
metrics = ['accuracy'])
То, что я хотел бы сделать, это адаптировать этот код, чтобы теперь быть CNN. Однако, когда я добавляю сверточный слой, я получаю ошибку:
model = tf.keras.Sequential([
Conv1D(filters = 250, kernel_size = 3, padding='valid', activation='relu', strides=1, input_shape = (768,)),
GlobalMaxPooling1D(),
Dense(4, activation = 'relu'),
Dense(1, activation = 'sigmoid')])
model.compile(optimizer = 'adam',
loss = 'binary_crossentropy',
metrics = ['accuracy'])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-59695050a94e> in <module>()
3 GlobalMaxPooling1D(),
4 Dense(4, activation = 'relu'),
----> 5 Dense(1, activation = 'sigmoid')])
6
7 model.compile(optimizer = 'adam',
5 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name)
178 'expected ndim=' + str(spec.ndim) + ', found ndim=' +
179 str(ndim) + '. Full shape received: ' +
--> 180 str(x.shape.as_list()))
181 if spec.max_ndim is not None:
182 ndim = x.shape.ndims
ValueError: Input 0 of layer conv1d_2 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: [None, 768]
Вот как выглядят данные, которые я использую.
Особенности:
train_features[0]
array([-4.97862399e-01, 1.49541467e-01, 5.81708886e-02, 1.63668215e-01,
-2.77605206e-01, 3.57868642e-01, 1.70950562e-01, 2.69330859e-01,
-3.29369396e-01, 2.12891083e-02, -4.02462274e-01, -1.98120754e-02,
-2.18944401e-01, 4.34780568e-01, -2.75409579e-01, 2.03015730e-01,...
train_features[0].shape
(768,)
Ярлыки:
train_labels.iloc[0:3]
turnout
0 73446 0
1 53640 1
16895 1
Name: turnout, dtype: int64
Любой совет очень ценится. Большое вам спасибо!