Я использую пакет exams
, я хочу с его помощью сгенерировать несколько упражнений Moodle, включающих некоторые изображения. Хотя при использовании этого кода в файле *rmd
:
```{r, echo = FALSE, results = "hide"}
exams::include_supplement("ae1_2_1e2.png")
```
Question
========
Question text:
\centering
$\includegraphics[width=0.55 \textwidth] {ae1_2_1e2.png}$
Answerlist
----------
* answer a
* answer b
* answer c
* answer d
Solution
========
Answerlist
----------
* True
* False
* False
* False
Meta-information
================
exname: ae1_2_1
extype: schoice
exsolution: 1000
exshuffle: 4
, который дает следующие результаты в Moodle:
Another question is, does the package allows to use images as options in the Moddle exercises (i.e. schoice)? Example:
```{r, echo = FALSE, results = "hide", out.width = "20%"}
exams::include_supplement(c("ae4_3_2_1e2.png","ae4_3_2_3e4.png"))
```
Question
========
For a right-tailed test (using the Neyman-Pearson criteria), which would be the rejection region for a t-test (independent samples)?
Answerlist
----------
* \ ![](ae4_3_2_1e2.png) $\bigg]-\infty;-t_{1-\frac{\alpha}{2};(n_1+n_2-2)}\bigg] \cup \bigg[t_{1-\frac{\alpha}{2};(n_1+n_2-2)};+\infty\bigg[$.
* \ ![](ae4_3_2_1e2.png) $\bigg]-\infty;-t_{1-\frac{\alpha}{2};(n_1-n_2)}\bigg] \cup \bigg[t_{1-\frac{\alpha}{2};(n_1-n_2)};+\infty\bigg[$.
* \ ![](ae4_3_2_3e4.png) $\bigg[t_{1-\alpha;(n_1-n_2)};+\infty\bigg[$.
* \ ![](ae4_3_2_3e4.png) $\bigg[t_{1-\alpha;(n_1+n_2-2)};+\infty\bigg[$.
SOLVED
You cannot have the same image file in different options. If you want to use the same image, you have to produce a copy of it and use a different name.
So the new code:
```{r, echo = FALSE, results = "hide", out.width = "20%"}
exams::include_supplement(c("ae4_3_2_1.png","ae4_3_2_3.png","ae4_3_2_2.png","ae4_3_2_4.png"))
```
Question
========
For a right-tailed test (using the Neyman-Pearson criteria), which would be the rejection region for a t-test (independent samples)?
Answerlist
----------
* \ ![](ae4_3_2_1.png){width=20%} $\bigg]-\infty;-t_{1-\frac{\alpha}{2};(n_1+n_2-2)}\bigg] \cup \bigg[t_{1-\frac{\alpha}{2};(n_1+n_2-2)};+\infty\bigg[$.
* \ ![](ae4_3_2_2.png){width=20%} $\bigg]-\infty;-t_{1-\frac{\alpha}{2};(n_1-n_2)}\bigg] \cup \bigg[t_{1-\frac{\alpha}{2};(n_1-n_2)};+\infty\bigg[$.
* \ ![](ae4_3_2_3.png){width=20%} $\bigg[t_{1-\alpha;(n_1-n_2)};+\infty\bigg[$.
* \ ![](ae4_3_2_4.png){width=20%} $\bigg[t_{1-\alpha;(n_1+n_2-2)};+\infty\bigg[$.
Meta-information
================
exname: RTT
extype: schoice
exsolution: 0001
exshuffle: TRUE
And the result (thanks to @Achim):
введите описание изображения здесь