Ну, у меня просто была похожая проблема, когда я много занимался исследованиями (главным образом потому, что у меня не было никаких знаний о C ++). Я хотел иметь возможность печатать треугольники по целочисленному представлению вершин. Вот как это выглядит:
#include <CGAL/Surface_mesh_default_triangulation_3.h>
#include <CGAL/Complex_2_in_triangulation_3.h>
#include <CGAL/make_surface_mesh.h>
#include <CGAL/Implicit_surface_3.h>
// This is the file where you can look for an example of iterating, geting basic vertex positions, outputing triangles
// #include <CGAL/IO/Complex_2_in_triangulation_3_file_writer.h>
// default triangulation for Surface_mesher
typedef CGAL::Surface_mesh_default_triangulation_3 Tr;
// c2t3
typedef CGAL::Complex_2_in_triangulation_3<Tr> C2t3;
typedef Tr::Geom_traits GT;
typedef GT::Sphere_3 Sphere_3;
typedef GT::Point_3 Point_3;
typedef GT::FT FT;
typedef FT (*Function)(Point_3);
typedef CGAL::Implicit_surface_3<GT, Function> Surface_3;
// This already have been defined
//typedef typename C2t3::Triangulation Tr;
typedef typename Tr::Vertex_handle Vertex_handle;
typedef typename Tr::Finite_vertices_iterator Finite_vertices_iterator;
typedef typename Tr::Finite_facets_iterator Finite_facets_iterator;
typedef typename Tr::Point Point;
FT sphere_function (Point_3 p) {
const FT x = p.x();
const FT y = p.y();
const FT z = p.z();
//const FT x2=p.x()*p.x(), y2=p.y()*p.y(), z2=p.z()*p.z();
const FT a = 2;
const FT b = 1;
const FT c = 1.5;
return x*x/a/a + y*y/b/b + z*z/c/c -1;
}
int main() {
Tr tr; // 3D-Delaunay triangulation
C2t3 c2t3 (tr); // 2D-complex in 3D-Delaunay triangulation
// defining the surface
Surface_3 surface(sphere_function, // pointer to function
Sphere_3(CGAL::ORIGIN, 2.)); // bounding sphere
// Note that "2." above is the *squared* radius of the bounding sphere!
// defining meshing criteria
CGAL::Surface_mesh_default_criteria_3<Tr> criteria(30., // angular bound
0.1, // radius bound
0.1); // distance bound
// meshing surface
CGAL::make_surface_mesh(c2t3, surface, criteria, CGAL::Non_manifold_tag());
std::cout << "Final number of points: " << tr.number_of_vertices() << "\n";
// Here should be the main code
Tr& tr2 = c2t3.triangulation();
std::map<Vertex_handle, int> V;
int inum = 0;
Finite_vertices_iterator vit = tr2.finite_vertices_begin();
while(vit != tr2.finite_vertices_end()) {
// making an integer representation of vertex pointers
V[vit] = inum++;
// obtaining vertex positions from vertex pointer vit
Point p = static_cast<Point>(vit->point());
std::cout << p.x() << " " << p.y() << " " << p.z() << std::endl;
++vit;
}
Finite_facets_iterator fit = tr2.finite_facets_begin();
while (fit != tr2.finite_facets_end()) {
typename Tr::Cell_handle cell = fit->first;
const int& index = fit->second;
int index1 = V[cell->vertex(tr.vertex_triple_index(index, 0))];
int index2 = V[cell->vertex(tr.vertex_triple_index(index, 1))];
int index3 = V[cell->vertex(tr.vertex_triple_index(index, 2))];
std::cout << index1 << " " << index2 << " " << index3 << std::endl;
++fit;
}
}
скомпилируйте его (если mesh_implicit_function
- это исходный файл, объектный файл и исполняемый файл):
c++ -DCGAL_USE_GMP -DCGAL_USE_MPFR -DCGAL_USE_ZLIB -frounding-math -o mesh_an_implicit_function.cpp.o -c mesh_an_implicit_function.cpp
c++ mesh_an_implicit_function.cpp.o -o mesh_an_implicit_function -lmpfr -lgmp -lCGAL -lboost_thread